5.8k views
21 votes
Find the derivative of tan(x).

User Daviddd
by
5.4k points

2 Answers

9 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Derivative of tan(x) is sec²x


\qquad \sf  \dashrightarrow \: \therefore (d)/(dx) ( \tan(x)) = { \sec}^(2) (x)

You can check the first principle method of derivation in attachment

Find the derivative of tan(x).-example-1
User Returneax
by
5.1k points
9 votes


\rightarrow \sf (d)/(dx) (tan(x))


\rightarrow \sf (d)/(dx) ( \ (sin(x))/(cos(x)) \ )

use the quotient rule


\rightarrow \sf (cos(x) * (d)/(dx) (sin(x)-sin(x)*(d)/(dx)(cos(x) )/(cos(x)^2)


\rightarrow \sf (cos(x) * cos(x)-sin(x)*(-sin(x) ))/(cos(x)^2)


\rightarrow \sf (cos(x)^2+sin(x)^2)/(cos(x)^2)


\rightarrow \sf (1)/(cos(x)^2)


\rightarrow \sf sec(x)^2

used formula's :

  • cos²(x) + sin²(x) = 1

  • \sf (1)/(cos^2(x) )= sec^2(x)
  • 
    \sf (d)/(dx) cos(x) = -sin(x)

  • \sf (d)/(dx) sin(x) = cos(x)
  • tan(x) = sin(x)/cos(x)
User Daniel Brady
by
6.0k points