147k views
0 votes
What is the rate of change for this function / careful / how can it be interpreted using the problem context?

What is the rate of change for this function / careful / how can it be interpreted-example-1

1 Answer

4 votes

Explanation:

FORMATION OF TABLE FOR THE FUNCTION
c\:=\:4t\:-\:150

As t represents the temperature in degrees Fahrenheit and c represents the number of cricket chirps per minute.

Considering the function


c\:=\:4t\:-\:150

when
t = 40

then
c = 4(40) - 150 = 160 - 150 = 10

when
t = 50

then
c = 4(50) - 150 = 200 - 150 = 50

when
t = 60

then
c = 4(60) - 150 = 240 - 150 = 90

when
t = 70

then
c = 4(70) - 150 = 280 - 150 = 130

when
t = 80

then
c = 4(80) - 150 = 320 - 150 = 170

when
t = 90

then
c = 4(90) - 150 = 360 - 150 = 210

when
t = 100

then
c = 4(100) - 150 = 400 - 150 = 250

So

Lets form the data table for this function based on the determined values


t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100


c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250

PART 1)

Considering the function


c\:=\:4t\:-\:150

As we know that

when
t = 60

then
c = 4(60) - 150 = 240 - 150 = 90

  • Meaning the number of chirps per minute would increase to
    90, when the temperature t in degrees Fahrenheit increase to 60.

The appropriate logic is that the speed at which cricket chirps is based on the temperature. The table table also indicates that as the temperature t increases, the number of cricket chirps also increases.

PART 2)

  • A rate of change is a rate that determines how one quantity changes in relation to another quantity.

Considering the two points


  • (40, 10)

  • (50, 50)


\mathrm{Slope\:between\:two\:points}:\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)


\left(x_1,\:y_1\right)=\left(40,\:10\right),\:\left(x_2,\:y_2\right)=\left(50,\:50\right)


m=(50-10)/(50-40)


m=4

It logically means for every increase of
10 units in
t (temperature in degrees Fahrenheit), the value of
c (number of chirps) is increasing to
40 units.

Thus, the rate of change will be
4.

Part 3)

Considering the function


c\:=\:4t\:-\:150

The data table for this function


t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100


c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250

Putting
t = 40 in the function brings the value of
c as
10.

i.e.


c\:=\:4\left(40\right)\:-\:150=160=10

Yes, it does make sense.

Its logical meaning is that at the start, when the value of
t was
40 temperature in degrees Fahrenheit, then the value of
c (number of chirps per minute) was
10.

User Cbowns
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.