147k views
0 votes
What is the rate of change for this function / careful / how can it be interpreted using the problem context?

What is the rate of change for this function / careful / how can it be interpreted-example-1

1 Answer

4 votes

Explanation:

FORMATION OF TABLE FOR THE FUNCTION
c\:=\:4t\:-\:150

As t represents the temperature in degrees Fahrenheit and c represents the number of cricket chirps per minute.

Considering the function


c\:=\:4t\:-\:150

when
t = 40

then
c = 4(40) - 150 = 160 - 150 = 10

when
t = 50

then
c = 4(50) - 150 = 200 - 150 = 50

when
t = 60

then
c = 4(60) - 150 = 240 - 150 = 90

when
t = 70

then
c = 4(70) - 150 = 280 - 150 = 130

when
t = 80

then
c = 4(80) - 150 = 320 - 150 = 170

when
t = 90

then
c = 4(90) - 150 = 360 - 150 = 210

when
t = 100

then
c = 4(100) - 150 = 400 - 150 = 250

So

Lets form the data table for this function based on the determined values


t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100


c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250

PART 1)

Considering the function


c\:=\:4t\:-\:150

As we know that

when
t = 60

then
c = 4(60) - 150 = 240 - 150 = 90

  • Meaning the number of chirps per minute would increase to
    90, when the temperature t in degrees Fahrenheit increase to 60.

The appropriate logic is that the speed at which cricket chirps is based on the temperature. The table table also indicates that as the temperature t increases, the number of cricket chirps also increases.

PART 2)

  • A rate of change is a rate that determines how one quantity changes in relation to another quantity.

Considering the two points


  • (40, 10)

  • (50, 50)


\mathrm{Slope\:between\:two\:points}:\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)


\left(x_1,\:y_1\right)=\left(40,\:10\right),\:\left(x_2,\:y_2\right)=\left(50,\:50\right)


m=(50-10)/(50-40)


m=4

It logically means for every increase of
10 units in
t (temperature in degrees Fahrenheit), the value of
c (number of chirps) is increasing to
40 units.

Thus, the rate of change will be
4.

Part 3)

Considering the function


c\:=\:4t\:-\:150

The data table for this function


t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100


c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250

Putting
t = 40 in the function brings the value of
c as
10.

i.e.


c\:=\:4\left(40\right)\:-\:150=160=10

Yes, it does make sense.

Its logical meaning is that at the start, when the value of
t was
40 temperature in degrees Fahrenheit, then the value of
c (number of chirps per minute) was
10.

User Cbowns
by
5.5k points