Explanation:
FORMATION OF TABLE FOR THE FUNCTION
![c\:=\:4t\:-\:150](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xb4c051wc5ar61gx6hinxc3zw2hsvc7r6s.png)
As t represents the temperature in degrees Fahrenheit and c represents the number of cricket chirps per minute.
Considering the function
![c\:=\:4t\:-\:150](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xb4c051wc5ar61gx6hinxc3zw2hsvc7r6s.png)
when
then
![c = 4(40) - 150 = 160 - 150 = 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xosqfbaoargh3000nrjjy5vynnbzul1o5z.png)
when
![t = 50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yr76rp4usb1af0g3cgvrf943oopmchjdpn.png)
then
![c = 4(50) - 150 = 200 - 150 = 50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s116g0i45roicwuz4v8zymj36sdpfn9jog.png)
when
then
![c = 4(60) - 150 = 240 - 150 = 90](https://img.qammunity.org/2021/formulas/mathematics/middle-school/neu2mzgz51018vrgkc96ywqp6qkd7v8jkd.png)
when
then
![c = 4(70) - 150 = 280 - 150 = 130](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pu33pk9f9wjafos83nkalieb82opirqp15.png)
when
![t = 80](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wbjizr6gigygh1huak38o90k97y6wsvh0a.png)
then
![c = 4(80) - 150 = 320 - 150 = 170](https://img.qammunity.org/2021/formulas/mathematics/middle-school/10a9e1ssrrufexpe9hfrity1831sjkq1n3.png)
when
then
![c = 4(90) - 150 = 360 - 150 = 210](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6i2e3z090157tgka6bn0phae1mm46gcw4c.png)
when
![t = 100](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6eqkdkjlyy9xisknthjk0sbwfvw9gh9y1x.png)
then
![c = 4(100) - 150 = 400 - 150 = 250](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1y8d4b51dgzrcwjjafslfjz0li0574d0s7.png)
So
Lets form the data table for this function based on the determined values
![t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xe6gkzqcpkdeosyzw1p93nl92ak5oaok3r.png)
![c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nj0k6s4bo7o5hmyl5tejscw0b8vhb30w7b.png)
PART 1)
Considering the function
![c\:=\:4t\:-\:150](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xb4c051wc5ar61gx6hinxc3zw2hsvc7r6s.png)
As we know that
when
then
![c = 4(60) - 150 = 240 - 150 = 90](https://img.qammunity.org/2021/formulas/mathematics/middle-school/neu2mzgz51018vrgkc96ywqp6qkd7v8jkd.png)
- Meaning the number of chirps per minute would increase to
, when the temperature t in degrees Fahrenheit increase to 60.
The appropriate logic is that the speed at which cricket chirps is based on the temperature. The table table also indicates that as the temperature t increases, the number of cricket chirps also increases.
PART 2)
- A rate of change is a rate that determines how one quantity changes in relation to another quantity.
Considering the two points
![\mathrm{Slope\:between\:two\:points}:\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xmv8xmphofiwf02o7jsrbpappv86wm6c8n.png)
![\left(x_1,\:y_1\right)=\left(40,\:10\right),\:\left(x_2,\:y_2\right)=\left(50,\:50\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dsyb021vaeax4eg5u063w4vjahtyt5c0u9.png)
![m=(50-10)/(50-40)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fewdl2bigqcd87v2qcrmd1mt28btacpg86.png)
![m=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/otlh4fxstu97pez6jhyc5braojnf26nae3.png)
It logically means for every increase of
units in
(temperature in degrees Fahrenheit), the value of
(number of chirps) is increasing to
units.
Thus, the rate of change will be
.
Part 3)
Considering the function
![c\:=\:4t\:-\:150](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xb4c051wc5ar61gx6hinxc3zw2hsvc7r6s.png)
The data table for this function
![t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xe6gkzqcpkdeosyzw1p93nl92ak5oaok3r.png)
![c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nj0k6s4bo7o5hmyl5tejscw0b8vhb30w7b.png)
Putting
in the function brings the value of
as
.
i.e.
![c\:=\:4\left(40\right)\:-\:150=160=10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xvhdms1h0l08yvdux9nmhw9a85ce7inl61.png)
Yes, it does make sense.
Its logical meaning is that at the start, when the value of
was
temperature in degrees Fahrenheit, then the value of
(number of chirps per minute) was
.