83.5k views
0 votes
3. Someone at the third-floor window (12.0 m above the ground) hurls a ball downward at an angle of

45 degrees with a speed of 25 m/s. How fast will the ball be traveling when it strikes the sidewalk
below?​

1 Answer

7 votes

Answer:


v=29.3283\ m.s^(-1)

Step-by-step explanation:

Given:

  • height of point from where the ball is projected,
    h=12\ m
  • angle of projection of the ball below the horizontal,
    \theta=45^(\circ)
  • initial velocity of projection,
    u=25\ m.s^(-1)

Now we find the vertical component of the initial velocity downwards:


u_y=u.\sin\theta


u_y=25* \cos45^(\circ)


u_y=17.6777\ m.s^(-1)

Now the final vertical velocity of the ball when it hits the ground:

using the equation of motion,


v_y^2=u_y^2+2.g.h


v_y^2=17.6777^2+2* 9.8* 12


v_y=23.402\ m.s^(-1)

Since the horizontal component of the motion is uniform since no force acts in the horizontal direction:


v_x=u_x=25\cos45


v_x=17.6777\ m.s^(-1)

Now the resultant final velocity:


v=√((17.6777)^2+(23.402)^2)


v=29.3283\ m.s^(-1)

User Kkgarg
by
6.1k points