Given :-
- Constant force, F = 20 N
- Mass of Car = 32 kg
- Initial speed, u = 4 m/s
- Final Speed = 9 m/s
To Find:-
- Duration for which force is appiled
Solution:-
![\green{ \underline { \boxed{ \sf{Force,F= Mass * Acceleration }}}}](https://img.qammunity.org/2023/formulas/sat/high-school/ufsderg6xg7f7us7dh2e6qfqobiw25xqfj.png)
So,
![\sf Acceleration,a = (Force)/(Mass)](https://img.qammunity.org/2023/formulas/sat/high-school/s8da72xgxjzc4ox0b2v7okz5a75r0qteas.png)
![\sf \implies (20)/(32)](https://img.qammunity.org/2023/formulas/sat/high-school/e0d24xynogeqna4q6ya9x07rorooj92ogk.png)
![\implies (5)/(8) m/s^2](https://img.qammunity.org/2023/formulas/sat/high-school/a1in5asmpjjvjtlw08qc5ru7m0jt7kgi8k.png)
Now,
By first equation of motion -
![\green{ \underline { \boxed{ \sf{v-u=at}}}}](https://img.qammunity.org/2023/formulas/sat/high-school/3lxjk5elvv2o39kpg7rob4y01nv2hpa3mt.png)
So,
![\sf t = (v-u)/(a)](https://img.qammunity.org/2023/formulas/sat/high-school/myr7cnav9pcl5s2mfogc2vivnrn9qoli6o.png)
where
- v = final velocity
- u = initial velocity
- a = acceleration
- t = time duration
Putting Values -
![\sf t = (9-4)/( (5)/(8))](https://img.qammunity.org/2023/formulas/sat/high-school/ovxpq2wbeyu78o6a4rohw85e8jl0g270a8.png)
![\sf t = (5)/( (5)/(8))](https://img.qammunity.org/2023/formulas/sat/high-school/v3j73x7pkfhlpnpz6rf37nfgzjfw3u31ga.png)
![\sf t = \cancel5 * \frac{8}{\cancel{5}}](https://img.qammunity.org/2023/formulas/sat/high-school/atx1um2uamkfbm6nkiv7p9vwkrt443b6y1.png)
![\sf t = 8 \:seconds](https://img.qammunity.org/2023/formulas/sat/high-school/wzhxziu9tqk3ua87hqfg0kpc8623nqsinc.png)
>>>Therefore, Force is applied for 8 seconds.