Answer:
F_avg = 76.9 lb
Step-by-step explanation:
Given:
- The speed of the ball v_i = 90 mi/h = 40.2336 m/s
- The force of the ball F = 5-oz = 0.141748 kg
- The ball is stopped in gloves
- The velocity with which the hand is moved back v_h = 30 ft/s
- The distance pulled back s = 6 in = 0.5 ft
Find:
Determine the average impulsive force exerted on the player's hand.
Solution:
- The conservation of momentum is applied before and after impact:
P_i = m_b*v_i
P_i = 0.141748*40.2336 = 5.70303 kg-m/s
P_f = 0
- The total time with which the hand is moved back:
t = s / v_avg
t = 0.5 / 30
t = 1 / 60 s
- The impulse is defined as:
Impulse = F_avg*t = change in momentum
F_avg*t = P_f - P_i
F_avg = 5.70303*60 = 342.18194 N
- Conversion from SI to Imperial:
F_avg = 342.18194/4.45 = 76.9 lb