54.9k views
0 votes
There are 250 wolves in a national park. the wolf population is increasing at a rate of 16% per year. write an exponential model to represent the situation. use the model from problem 1 to determine how long it will take the wolf population in the national park to reach 1000. round the answer to the nearest hundredth.

User Marte
by
8.1k points

1 Answer

4 votes


\qquad \textit{Amount for Exponential Growth} \\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &250\\ r=rate\to 16\%\to (16)/(100)\dotfill &0.16\\ t=\textit{elapsed time} \end{cases} \\\\\\ A=250(1 + 0.16)^(t)\implies A=250(1.16)^t \\\\[-0.35em] ~\dotfill


A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\dotfill &1000\\ P=\textit{initial amount}\dotfill &250\\ r=rate\to 16\%\to (16)/(100)\dotfill &0.16\\ t=\textit{elapsed time} \end{cases} \\\\\\ 1000=250(1.16)^t\implies \cfrac{1000}{250}=1.16^t\implies 4=1.16^t \\\\\\ \log(4)=\log(1.16^t)\implies \log(4)=t\log(1.16) \\\\\\ \cfrac{\log(4)}{\log(1.16)}=t\implies \stackrel{\textit{about 9 years and 4 months}}{9.34\approx t}

User Noneme
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories