Answer:
P(X=8)=11.2599 %
Explanation:
According to the Poisson Model:
P=
![(e^(-\lambda)\lambda^(x))/(x!)](https://img.qammunity.org/2021/formulas/mathematics/college/ymwiqgjejip9da6qw7l6vcp5p4zvg2qa2r.png)
where:
λ is the average of cars sold
x is the number of cars sold tomorrow
P is the probability of cars sold tomorrow
In our case:
Given data:
λ=10 cars
x=8 cars
Required:
The probability that the dealer sells 8 cars tomorrow=?
Solution:
![P=(e^(-\lambda)\lambda^(x))/(x!)\\ P=(e^(-10)10^(8))/(8!)\\P=0.112599\\P=11.2599\%](https://img.qammunity.org/2021/formulas/mathematics/college/dakqvy641hm5khrkupalfqp8apad7iec6j.png)
P(X=8)=11.2599 %