155k views
3 votes
Let A and B be sets with cardinal numbers , n(A) = a and n(B) = b respectively . Decide whether the statement is true or false. 2) n(A cup B)=n(A)+n(B)-n(A cap B)

User HelloWorld
by
5.6k points

1 Answer

5 votes

Answer:

True

Explanation:


A\cup B=A\cup(A-B)\\\\A\ and\ A-B\ are\ disjoint\ that\ means\ there\ is\ no\ common\ element\ in\ these\ two.\\\\n(A\cup B)=n(B\cup(A-B))\\\\n(A\cup B)=n(B)+n(A-B)\ \ \ \ \ \ \ as\ for\ disjoint\ set\ P,Q\ n(P\cup Q)=n(P)+n(Q)\\\\(n(P-Q)=n(P)-n(P\cap Q))\\\\n(AUB)=n(B)+n(A-B)\\\\n(AUB)=n(B)+n(A)-n(A\cap B)\\\\n(AUB)=n(A)+n(B)-n(A\cap B)\\\\Hence\ given\ statement\ is\ true

User Feckmore
by
5.7k points