Answer:
![L=2.3\ ft\\W=1.9\ ft\\H=1.7\ ft](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yyd5og93jjjzrxyykbk6btl43zmdkijrh9.png)
Explanation:
we know that
The volume of a portable kennel (rectangular prism) is equal to
![V=LWH](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jovb72tftredqpcrm6f1lijsb9r3h1c6j7.png)
where
![L=(x+0.4)\ ft\\W=x\ ft\\H=(x-0.2)\ ft](https://img.qammunity.org/2021/formulas/mathematics/middle-school/40izll6ock04g7k4himoqqdizcrcocyhtz.png)
![V=7.4\ ft^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zqdz76b03cwydtyx57y48tfi59xrtje27w.png)
substitute the given values in the formula of volume
![7.4=(x+0.4)(x)(x-0.2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vks2ufpyp0eovt6k1utb2o0zq3bmlpq6ze.png)
Apply distributive property right side
![7.4=x(x^2-0.2x+0.4x-0.08)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ptphv1nyppu87pn5e2ar7lh4q2f702l07i.png)
![7.4=x(x^2+0.2x-0.08)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gcfw89b2xzaaltojg67e6tc9do1vwlwsmd.png)
![7.4=x^3+0.2x^2-0.08x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jfgdbvi5hutiy1qot3ggioac3u5m7skeom.png)
![x^3+0.2x^2-0.08x-7.4=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5yshdheoegz78nxjockyf90zn7tclnjwnq.png)
Solve the cubic equation by graphing
using a graphing tool
The solution is x=1.9
see the attached figure
Find the dimensions
substitute the value of x
![L=(1.9+0.4)=2.3\ ft\\W=1.9\ ft\\H=(1.9-0.2)=1.7\ ft](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s0pujylo3dusk7q5vqef643v3tuu3zzmim.png)