110k views
15 votes
Help solve for “q”
—————————————

Help solve for “q” —————————————-example-1

2 Answers

8 votes

Answer:

Value of
\sf\purple{q\: = \:16.}

Explanation:


\rightarrowAs we know that,

Sum all angles that lie on a straight line =
\sf\blue{180°}

So,


\rightarrow
\sf{(4q-1)°+ 117°\: = \:180°}


\rightarrow
\sf{(4q-1)\: = \:180-117}


\rightarrow
\sf{(4q-1)\: = \:63}


\rightarrow
\sf{4q\: = \:63+1}


\rightarrow
\sf{q\: = \:(64)/(4)}


\rightarrow
\sf{q\: = \:16}

Thus,
\sf\purple{q\: = \:16.}

_________________________________

Hope it helps you:)

User Joel Eckroth
by
8.0k points
10 votes

Digram:-


\\


\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\put(5,1){\vector(1,0){4}}\put(5,1){\vector(-1,0){4}}\put(5,1){\vector(1,1){3}}\put(2,2){$\underline{\boxed{\large\sf a + b = 180^(\circ)}$}}\put(4.5,1.3){$\sf a^(\circ)$}\put(5.7,1.3){$\sf b^(\circ)$}\end{picture}


\\

STEP :-


\dashrightarrow \tt(4q - 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)

{Linear pair}


\\ \\


\dashrightarrow \tt(4q - 1) {}^( \circ)= 18 {0}^( \circ) - {117}^( \circ)


\\


\dashrightarrow \tt(4q - 1) {}^( \circ)=63^( \circ)


\\


\dashrightarrow \tt4q - 1{}^( \circ)=63^( \circ)


\\


\dashrightarrow \tt4q =63^( \circ) + 1{}^( \circ)


\\


\dashrightarrow \tt4q =64{}^( \circ)


\\


\dashrightarrow \tt \: q = (64)/(4)^( \circ)


\\


\dashrightarrow \tt \: q = (16 * 4)/(4)^( \circ)


\\


\dashrightarrow \tt \: q = (16 * \cancel4)/(\cancel4)^( \circ)


\\


\dashrightarrow \tt \: q = (16)/(1)


\\


\dashrightarrow \bf q = 16 \degree


\\ \\

Verification:


\\


\dashrightarrow \tt(4 * 16- 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt(64- 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt63^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt180^( \circ) = 18 {0}^( \circ)


\\

LHS = RHS

HENCE VERIFIED!

User Mohd Prophet
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories