110k views
15 votes
Help solve for “q”
—————————————

Help solve for “q” —————————————-example-1

2 Answers

8 votes

Answer:

Value of
\sf\purple{q\: = \:16.}

Explanation:


\rightarrowAs we know that,

Sum all angles that lie on a straight line =
\sf\blue{180°}

So,


\rightarrow
\sf{(4q-1)°+ 117°\: = \:180°}


\rightarrow
\sf{(4q-1)\: = \:180-117}


\rightarrow
\sf{(4q-1)\: = \:63}


\rightarrow
\sf{4q\: = \:63+1}


\rightarrow
\sf{q\: = \:(64)/(4)}


\rightarrow
\sf{q\: = \:16}

Thus,
\sf\purple{q\: = \:16.}

_________________________________

Hope it helps you:)

User Joel Eckroth
by
3.2k points
10 votes

Digram:-


\\


\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\put(5,1){\vector(1,0){4}}\put(5,1){\vector(-1,0){4}}\put(5,1){\vector(1,1){3}}\put(2,2){$\underline{\boxed{\large\sf a + b = 180^(\circ)}$}}\put(4.5,1.3){$\sf a^(\circ)$}\put(5.7,1.3){$\sf b^(\circ)$}\end{picture}


\\

STEP :-


\dashrightarrow \tt(4q - 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)

{Linear pair}


\\ \\


\dashrightarrow \tt(4q - 1) {}^( \circ)= 18 {0}^( \circ) - {117}^( \circ)


\\


\dashrightarrow \tt(4q - 1) {}^( \circ)=63^( \circ)


\\


\dashrightarrow \tt4q - 1{}^( \circ)=63^( \circ)


\\


\dashrightarrow \tt4q =63^( \circ) + 1{}^( \circ)


\\


\dashrightarrow \tt4q =64{}^( \circ)


\\


\dashrightarrow \tt \: q = (64)/(4)^( \circ)


\\


\dashrightarrow \tt \: q = (16 * 4)/(4)^( \circ)


\\


\dashrightarrow \tt \: q = (16 * \cancel4)/(\cancel4)^( \circ)


\\


\dashrightarrow \tt \: q = (16)/(1)


\\


\dashrightarrow \bf q = 16 \degree


\\ \\

Verification:


\\


\dashrightarrow \tt(4 * 16- 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt(64- 1) {}^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt63^( \circ) + {117}^( \circ) = 18 {0}^( \circ)


\\


\dashrightarrow \tt180^( \circ) = 18 {0}^( \circ)


\\

LHS = RHS

HENCE VERIFIED!

User Mohd Prophet
by
3.8k points