158k views
5 votes
Can someone help me with this question

Can someone help me with this question-example-1

2 Answers

6 votes

Answer:

B

Explanation:

Convert from mixed numbers to improper fractions:


\sf area=90 (3)/(10)=(90 \cdot 10+3)/(10)=(903)/(10)


\sf length=10\frac12=(10 \cdot 2+1)/(2)=(21)/(2)

Area of a rectangle = length x width

⇒ width = area ÷ length


\sf \implies width=(903)/(10) / (21)/(2)


\sf \implies width=(903)/(10) * (2)/(21)


\sf \implies width=(1806)/(210)


\sf \implies width=(1806 / 42)/(210 / 42)


\sf \implies width=(43)/(5)


\sf \implies width=8\frac35

User Denis Biondic
by
4.9k points
10 votes


\pink{ \text{Given:}}


\\


\star \sf{}Area =90 (3)/(10)


\\


\star \sf{}Length =10 (1)/(2)


\\ \\


\purple{ \text{To~Find:}}


\\ \\


\star \sf Width \: of \: rectangle


\\ \\


\orange{ \text{Solution:}}


\\ \\

So first convert length and area from fraction form to decible.


\leadsto\sf{}Area =90 (3)/(10)


\\


\leadsto\sf{}Area = (903)/(10)


\\


\leadsto\sf{}Area =90.3


\\

Now convert value length into decibel .


\\


\leadsto\sf{}Length =10 (1)/(2)


\\


\leadsto\sf{}Length = (21)/(2)


\\


\leadsto\sf{}Length = 10.5


\\

We know :-


\bigstar\boxed{\rm Area~of~rectangle= length * width}


\\ \\

So:-


\\


: \implies\sf Area~of~rectangle= length * width \\ \\ \\ : \implies\sf 90.3= 10.5 * width \\ \\ \\: \implies\sf 90.3 / 10.5=width \\ \\ \\: \implies\sf ( 90.3)/(10.5)=width \\ \\ \\: \implies\sf ( 90 \cancel.3)/(10 \cancel.5)=width \\ \\ \\: \implies\sf ( 903)/(105)=width \\ \\ \\: \implies\sf width = ( 903)/(105) \\ \\ \\: \implies \underline{\boxed{\sf width = 8.6}} \pink\bigstar


\\\\\\

Know More:


\begin{lgathered}\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length* Breadth \\\\ \star\sf Triangle=(1)/(2)* Base* Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\frac {1}{2}* d_1* d_2 \\\\ \star\sf Rhombus =\:\frac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base* Height\\\\ \star\sf Trapezium =\frac {1}{2}(a+b)* Height \\ \\ \star\sf Equilateral\:Triangle=\frac {√(3)}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}\end{lgathered}

User Fcarreno
by
5.9k points