158k views
5 votes
Can someone help me with this question

Can someone help me with this question-example-1

2 Answers

6 votes

Answer:

B

Explanation:

Convert from mixed numbers to improper fractions:


\sf area=90 (3)/(10)=(90 \cdot 10+3)/(10)=(903)/(10)


\sf length=10\frac12=(10 \cdot 2+1)/(2)=(21)/(2)

Area of a rectangle = length x width

⇒ width = area ÷ length


\sf \implies width=(903)/(10) / (21)/(2)


\sf \implies width=(903)/(10) * (2)/(21)


\sf \implies width=(1806)/(210)


\sf \implies width=(1806 / 42)/(210 / 42)


\sf \implies width=(43)/(5)


\sf \implies width=8\frac35

User Denis Biondic
by
7.6k points
10 votes


\pink{ \text{Given:}}


\\


\star \sf{}Area =90 (3)/(10)


\\


\star \sf{}Length =10 (1)/(2)


\\ \\


\purple{ \text{To~Find:}}


\\ \\


\star \sf Width \: of \: rectangle


\\ \\


\orange{ \text{Solution:}}


\\ \\

So first convert length and area from fraction form to decible.


\leadsto\sf{}Area =90 (3)/(10)


\\


\leadsto\sf{}Area = (903)/(10)


\\


\leadsto\sf{}Area =90.3


\\

Now convert value length into decibel .


\\


\leadsto\sf{}Length =10 (1)/(2)


\\


\leadsto\sf{}Length = (21)/(2)


\\


\leadsto\sf{}Length = 10.5


\\

We know :-


\bigstar\boxed{\rm Area~of~rectangle= length * width}


\\ \\

So:-


\\


: \implies\sf Area~of~rectangle= length * width \\ \\ \\ : \implies\sf 90.3= 10.5 * width \\ \\ \\: \implies\sf 90.3 / 10.5=width \\ \\ \\: \implies\sf ( 90.3)/(10.5)=width \\ \\ \\: \implies\sf ( 90 \cancel.3)/(10 \cancel.5)=width \\ \\ \\: \implies\sf ( 903)/(105)=width \\ \\ \\: \implies\sf width = ( 903)/(105) \\ \\ \\: \implies \underline{\boxed{\sf width = 8.6}} \pink\bigstar


\\\\\\

Know More:


\begin{lgathered}\small\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf \small{Formulas\:of\:Areas:-}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length* Breadth \\\\ \star\sf Triangle=(1)/(2)* Base* Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\frac {1}{2}* d_1* d_2 \\\\ \star\sf Rhombus =\:\frac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base* Height\\\\ \star\sf Trapezium =\frac {1}{2}(a+b)* Height \\ \\ \star\sf Equilateral\:Triangle=\frac {√(3)}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}\end{lgathered}

User Fcarreno
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories