Answer:
Option B.
Explanation:
Given information: ∠MHL=(3x+20), ∠KHN=(x+25), and ∠JHN=(x+20).
We need to find the measure of ∠JHN.
(Vertical opposite angles)
![\angle MHL=\angle JHN+\angle KHN](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sjnxpu3epf4y27qj7r3e4lld5pd21xc3bs.png)
Substitute the given values.
![3x+20=(x+20)+(x+25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vwg47595r9hoysyvrsyuua67pemlgs371x.png)
![3x+20=2x+45](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jan0nn4hdlu3oj6xwlxd2bnuf9qjx40ed9.png)
![3x-2x=45-20](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x29lga16tfyzh1yt6zm00e2z89u1ep5lpc.png)
![x=25](https://img.qammunity.org/2021/formulas/mathematics/middle-school/w63nwwy5ief2wbx20rglfbhzpfg7otos22.png)
The value of x is 25. So, the measure of ∠JHN is
![\angle JHN=x+20=25+20=45](https://img.qammunity.org/2021/formulas/mathematics/middle-school/23uoznz615aqtbv33erzv4i1x1r8pnhmhi.png)
The measure of ∠JHN is 45°.
Therefore, the correct option is B.