Answer:
x=±0.026m
Step-by-step explanation:
In simple harmonic motion the maximum value of the magnitude of velocity
![v_(max)=wA=\sqrt{(k)/(m) }A](https://img.qammunity.org/2021/formulas/physics/college/m8vi5h9rhgvjxrhcsrwuf6wq0k8nkpzg5e.png)
The speed as a function of position for simple harmonic oscillator is given by
![v=w\sqrt{A^(2)-x^(2)](https://img.qammunity.org/2021/formulas/physics/college/m3i1i3yai0165ja74417zqaj6ej6uuwyvo.png)
where A is amplitude of motion
Given data
Amplitude A=3 cm =0.03 m
v=(1/2)Vmax
To find
We have asked to find position x does its speed equal half of is maximum speed
Solution
The speed of the particle the maximum speed as:
![v=(V_(max) )/(2)\\ w\sqrt{A^(2)-x^(2) }=(wA)/(2)\\ A^(2)-x^(2)=(A^(2) )/(4)\\ x^(2)=A^(2)- (A^(2) )/(4)\\ x^(2)=(3A^(2))/(4) \\x=\sqrt{(3A^(2))/(4)}](https://img.qammunity.org/2021/formulas/physics/college/xtd54p0jgpy0riokx2iggenw9sxr1e96du.png)
x=±(√3(0.03)/2)
x=±0.026m