48.5k views
0 votes
Compare the wavelengths of an electron (mass = 9.11 x 10⁻³¹ kg) and a proton (mass = 1.67 x 10²⁷ kg), each having (a) a speed of 3.4 x 10⁶ m/s; (b) a kinetic energy of 2.7 x 10⁻¹⁵ J.

1 Answer

1 vote

Answer:

Part A:

For electron:


\lambda_e=2.1392*10^(-10) m

For Proton:


\lambda_p=1.16696*10^(-13) m

Part B:

For electron:


\lambda_e=9.44703*10^(-12) m

For Proton:


\lambda_p=2.20646*10^(-13) m

Step-by-step explanation:

Formula for wave length λ is:


\lambda=(h)/(mv)

where:

h is Planck's constant=
6.626*10^(-34)

m is the mass

v is the velocity

Part A:

For electron:


\lambda_e=(6,626*10^(-34))/((9.11*10^(-31))*(3.4*10^6)) \\\lambda_e=2.1392*10^(-10) m

For Proton:


\lambda_p=(6,626*10^(-34))/((1.67*10^(-27))*(3.4*10^6)) \\\lambda_p=1.16696*10^(-13) m

Wavelength of proton is smaller than that of electron

Part B:

Formula for K.E:


K.E=(1)/(2)mv^2\\v=√(2 K.E/m)

For Electron:


v_e=\sqrt{(2*2.7*10^(-15))/(9.11*10^(-31))} \\v_e=76990597.74\ m/s

Wavelength for electron:


\lambda_e=(6,626*10^(-34))/((9.11*10^(-31))*(76990597.74)) \\\lambda_e=9.44703*10^(-12) m

For Proton:


v_p=\sqrt{(2*2.7*10^(-15))/(1.67*10^(-27))} \\v_p=1798202.696\ m/s

Wavelength for proton:


\lambda_p=(6,626*10^(-34))/((1.67*10^(-27))*(1798202.696)) \\\lambda_p=2.20646*10^(-13) m

Wavelength of electron is greater than that of proton.

User Tony Edgecombe
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.