136k views
7 votes
25^(2x+3) = 125^(2x+8)
please help and show work!!!!!!!

User AliAzra
by
8.1k points

2 Answers

6 votes

Let's solve up


\\ \rm\rightarrowtail 25^(2x+3)=125^(2x+8)


\\ \rm\rightarrowtail 5^(2(2x+3))=5^(3(2x+8))


\\ \rm\rightarrowtail 5^(4x+6)=5^(6x+24)


\\ \rm\rightarrowtail 4x+6=6x+24


\\ \rm\rightarrowtail -18=2x


\\ \rm\rightarrowtail x=-9

User Fernandohur
by
8.3k points
5 votes

Answer:


x = -9

Explanation:

Given equation:


25^(2x+3) = 125^(2x+8)

Convert 25 and 125 to base 5:


\implies (5^2)^(2x+3) = (5^3)^(2x+8)

Apply exponent rule
(a^b)^c=a^(bc)


\implies 5^(2(2x+3)) = 5^(3(2x+8))

If
a^(f(x))=a^(g(x)) then
f(x)=g(x):


\implies 2(2x+3) = 3(2x+8)

Expand:


\implies 4x+6 = 6x+24

Subtract 6x from both sides:


\implies -2x+6 = 24

Subtract 6 from both sides:


\implies -2x=18

Divide both sides by -2:


\implies x=-9

User Upabove
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories