Answer:
it makes more sense to buy one 20 inch pizza
Explanation:
step 1
Find the area of a 10 inch pizza
The area of a pizza ( circle) is equal to
![A=\pi r^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kltiiuyxj30cc2vin186woxkzp37096goj.png)
we have
---> the radius is half the diameter
substitute
![A=\pi (5)^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bu1ccl72i2gtnzkm0y8354owa8fmc62rwi.png)
![A=25\pi\ in^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uka710xaey0p94lxwpl908k4yf4mzrwis1.png)
assume
![\pi =3.14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2ii6c8ji4m1i4zmahyv3w8bcv3ouzmwkjg.png)
![A=25(3.14)=78.5\ in^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q3ygs07xoukcfu9gnuiy89bmvthwbbzi3f.png)
step 2
Find the cost of a 10 in pizza per square inch
Divide the cost by the area
![(11)/(78.5)= \$0.14\ per\ square\ inch](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zd5isipbp5v9ldeiid4nof451nbxcdmco6.png)
step 3
Find the area of a 20 inch pizza
The area of a pizza ( circle) is equal to
![A=\pi r^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kltiiuyxj30cc2vin186woxkzp37096goj.png)
we have
---> the radius is half the diameter
substitute
![A=\pi (10)^(2)\\A=100\pi\ in^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kyokbxjkicxniydrhmoh7sq69pl8kduhaa.png)
assume
![\pi =3.14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2ii6c8ji4m1i4zmahyv3w8bcv3ouzmwkjg.png)
![A=100(3.14)=314\ in^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gsqv2iy2e306bzd1efrizt3r1l3fxs9obw.png)
step 4
Find the cost of a 20 in pizza per square inch
Divide the cost by the area
![(22)/(314)= \$0.07\ per\ square\ inch](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yrgggdyfq0d3xrar8zkc48fudgb9lbo8no.png)
therefore
it makes more sense to buy one 20 inch pizza (because the unit rate is less)