Option A:
![$(dy)/(dx)= (-2(2x^2+9x+3) )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vqx1ytcq3a8erd4k1o62vv7xo65dd48xx3.png)
Solution:
Given
![$y=(3x^2+2x)/(2x^2-3) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ckz0qst0luuk0aakdtaia7mzoaqy876rg5.png)
To calculate
:
![$(dy)/(dx)=(d)/(dx)((3x^2+2x)/(2x^2-3)) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yo2onknq5k3kmxbkqx8wsm7yl5bqlo2j90.png)
Using differential rule:
![$(d)/(dx)((u)/(v) ) =(v(du)/(dx)-u(dv)/(dx) )/(v^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vxyt477lkm5d825datc1rggxsjz9bjd931.png)
Here,
and
![v=2x^2-3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g5mijregmqfid5szkr393qoxztrmtmkqq4.png)
– – – – (1)
Now, using another differential rule:
and
, a=constant
– – – – (2)
– – – – (3)
Substitute (2) and (3) in (1), we get
![$(d)/(dx)((3x^2+2x)/(2x^2-3)) =((2x^2-3)(6x+2)-(3x^2+2x)(4x) )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b9hoh41e2fu0qzw0rmkgui4qj67xsdnvlv.png)
Now, simplifying the above equation
![$=((12x^3+4x^2-18x-6)-(12x^3+8x^2) )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fw4vko7jjxphdu800iywwn3jagqd1eeeb5.png)
![$=(12x^3+4x^2-18x-6-12x^3-8x^2 )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h8fx3xnhhukq33cz32myowz5xbfbeuy1fz.png)
![$=(-4x^2-18x-6 )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pj5rco70y2jq91epyy5ouwl5qdqwzr2j77.png)
Take –2 as common factor in numerator of the fraction.
![$=(-2(2x^2+9x+3) )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/va77ls5n8eb0e7734expohr34tyxmf7mss.png)
![$(dy)/(dx)= (-2(2x^2+9x+3) )/((2x^2-3)^2)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vqx1ytcq3a8erd4k1o62vv7xo65dd48xx3.png)