Answer:
Perimeter of the kite is 16.2 units rounding of to the nearest tenth.
Explanation:
Since, WXYZ is a kite, two separate pairs of repeated sides are congruent
This means,
WX=XY
WZ=ZY
∴, perimeter of kite WXYZ is = 2 (WX + WZ) Bar
(WX)Bar =
![\sqrt{(1-3){{2} \atop}\++(1+4){{2} \atop} } = \sqrt{(-2){{2} \atop}\++(-3){{2} \atop}} = √((4+9)) = √(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5d852j8popc26douo7ax5t0y3oohx97us.png)
(WZ)Bar =
![\sqrt{(1-3){{2} \atop}\++(1+3){{2} \atop} } = \sqrt{(-2){{2} \atop}\++(+4){{2} \atop}} = √((4+16)) = √(20)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1xekvo92bgbkr6rmpzjlukxadvl7artbul.png)
Hence, Perimeter P =
≈ 16.2 Units