46.2k views
3 votes
This is all of Geometry work

This is all of Geometry work-example-1

1 Answer

7 votes

9. x = 9 units

10.
x^\circ = 12^\circ

11.
x^\circ = 6^\circ

12.x =10 units

13. x= 1 unit

14.
x =3^\circ

15.
x = 10^\circ

16.
x = 10^\circ

Explanation:

9.

Opposite sides of a parallelogram are equal to each other.

Therefore

2x-5 = 13

⇔2x = 13+5


x = (18)/(2)

⇔x = 9 units

10.

Sum of adjacent angles of parallelogram is
180^\circ.

Therefore


(11x-7)^\circ +55= 180 ^\circ


11x^\circ = 180 ^\circ -55^\circ +7^\circ


11x^\circ = 132^\circ


x^\circ=((132)/(11) )^\circ


x^\circ = 12^\circ

11.

Opposite angles of a parallelogram are congruent(equal).

Therefore


16x -4 = 92^\circ


16x = 92^\circ +4


x^\circ =(96 )/(16)


x^\circ = 6^\circ

12.

Opposite sides of a parallelogram are congruent.

Therefore

2x-11=9

⇔2x = 11+9

⇔2x=20


x =(20)/(2)

⇔x =10 units

13.

Opposite sides of a parallelogram are congruent (equal).

Therefore,

17x+1=18

⇔17x =18-1

⇔x= 1 unit

14.

Opposite angles of a parallelogram are congruent(equal).

Therefore,


12x -1 =35^\circ


12x =35^\circ +1^\circ


x= ((36)/(12) )^\circ


x =3^\circ

15.

Sum of adjacent angles of parallelogram is
180^\circ.

Therefore


10x +6 + 74^\circ=180^\circ


10x =180^\circ -74^\circ -6^\circ


x =( (100)/(10) )^\circ


x = 10^\circ

16.

Opposite angles of a parallelogram are congruent(equal).

Therefore,


13x -10=120^\circ


13x = 120^\circ +10^\circ


x =( (130)/(13))^\circ


x = 10^\circ

User Fangio
by
4.4k points