Answer:
22.6 ft
Explanation:
We are given that
Width of parabola=32 ft
Half width of parabola=
![(32)/(2)=16ft](https://img.qammunity.org/2021/formulas/mathematics/college/mo1u9c9u3rihjz652yt2qrle6lghlrlj5p.png)
Distance from origin on right side on x-axis=16ft
Distance from origin on left side =-16 ft
Maximum height of parabola=16 ft
Therefore, the point (0,16) lie on the parabola.
Equation of parabola along y-axis is given by
![y=a(x-h)^2+k](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8p1sxsgegitwlyo0h3hri0gwrs8yt9xyxk.png)
Where vertex=(h,k)
Vertex of parabola=(0,16)
Substitute the value of vertex
..(1)
Equation(1) is passing through the point (16,0)
Therefore,
![0=a(16)^2+16](https://img.qammunity.org/2021/formulas/mathematics/college/d8x7ubhvxg56louwz48a9e5a32zl5icvjl.png)
![-16=256a](https://img.qammunity.org/2021/formulas/mathematics/college/6taicn0nc6xoa5epvtws1e8o1bdzp0whtk.png)
![a=-(16)/(256)=-(1)/(16)](https://img.qammunity.org/2021/formulas/mathematics/college/d6eynihtnfqmfrahc6lx949nt1375uxgml.png)
Substitute the value of a in equation(1)
![y=-(1)/(16)x^2+16](https://img.qammunity.org/2021/formulas/mathematics/college/zdgpcei9cz3524a7prnmtd5zp53w6qjbwf.png)
Height of doorway=8 ft
It means we have to find the value of x at y=8
Substitute the value of y
![8=-(1)/(16)x^2+16](https://img.qammunity.org/2021/formulas/mathematics/college/ts1un256mydskngmqi66kwv2v0tumv9oo5.png)
![8-16=-(1)/(16)x^2](https://img.qammunity.org/2021/formulas/mathematics/college/mvuczjkq6uxdhaiqn7u0nbyuvchwgkmuht.png)
![-8=-(1)/(16)x^2](https://img.qammunity.org/2021/formulas/mathematics/college/b9q4qcwp7apes5zg993uzww6n4ji511rtd.png)
![x^2=8* 16=128](https://img.qammunity.org/2021/formulas/mathematics/college/145vt57dhm4fvogiyxvz6ap0qtdgsim1ic.png)
ft
Width of rectangular doorway=2x=2(11.3)=22.6 ft
Hence, the width of rectangular doorway=22.6 ft