228k views
5 votes
Construct a simulated 1H NMR spectrum for ethyl acetate by dragging and dropping the appropriate splitting patterns into the boxes on the chemical shift baseline, and by dragging integration values into the small box above each signal. Items may be used more than once. Peak heights do not represent integration.

1 Answer

2 votes

Answer:

Triplet at 1.15 ppm

Singlet at 2.02 ppm

Quartet at 4.10 ppm

Step-by-step explanation:

In ethyl acetate there are three different sets of protons having different surrounding as compared to each other. The predicted ¹H-NMR of ethyl acetate is attached below and following are the signals shown by this compound,

(i) A singlet around 2.02 ppm is a characteristic peak shown by protons at carbon a. This is because there is no proton available on the adjacent carbon so there is no coupling.

(ii) A triplet around 1.15 ppm is a peak shown by protons at carbon c. This is because there are two proton present on the adjacent carbon so, according to (n+1) rule it will give a triplet peak.

(iii) A quartet around 4.10 ppm is a peak shown by protons at carbon b. This is because there are three proton present on the adjacent carbon so, according to (n+1) rule it will give a quartet peak. Also, as it is directly attached to oxygen atom hence, the chemical shift is downfielded or deshielded.

Construct a simulated 1H NMR spectrum for ethyl acetate by dragging and dropping the-example-1
User Splattne
by
3.5k points