Answer:
The Correct option is A.
![(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6t1qtvzh73hqboljnk2lkt090bdupr1par.png)
Therefore the value of Cos ∠C is
![\cos \angle C = (5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mn4ri30v1x1odo14zk44atz6ila811f98l.png)
Explanation:
Given:
In Right Angle Triangle ABC
∠B = 90°
BC = 10 ...Adjacent Side to Angle C.
AC = 26 ...Hypotenuse
To Find:
Cos C =?
Solution:
In Right Angle Triangle ABC , By Cosine Identity we have
![\cos C = \frac{\textrm{side adjacent to angle C}}{Hypotenuse}\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2mqy0m42fyyyhp7x6nk97mgi16ryzviq3a.png)
Substituting the values we get
![\cos C = (BC)/(AC)=(10)/(26)=(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cy6tmizbsp9nkrhnjg9mrfwmaxgpc2jxcz.png)
Therefore the value of Cos ∠C is
![\cos \angle C = (5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mn4ri30v1x1odo14zk44atz6ila811f98l.png)