3.9k views
24 votes
23 number please
thank youu​

23 number please thank youu​-example-1

1 Answer

9 votes

Explanation:


(\left(x^2-(1)/(y^2)\right)^x\left(x-(1)/(y)\right)^(y-x))/(\left(y^2-(1)/(x^2)\right)^y\left(y+(1)/(x)\right)^(x-y))\\\\=(\left((x^2y^2-1)/(y^2)\right)^x\left((xy)/(y)-(1)/(y)\right)^(y-x))/(\left((x^2y^2)/(x^2)\right)^y\left((xy)/(x)+(1)/(x)\right)^(x-y))


=(\left((x^2y^2-1)/(y^2)\right)^x\left((xy-1)/(y)\right)^y\left((xy-1)/(y)\right)^(-x))/(\left((x^2y^2)/(x^2)\right)^y\left((xy+1)/(x)\right)^x\left((xy+1)/(x)\right)^(-y))\\\\=(\left((x^2y^2-1)/(y^2)\right)^x\left((xy-1)/(y)\right)^y\left((y)/(xy-1)\right)^x)/(\left((x^2y^2-1)/(x^2)\right)^y\left((xy+1)/(x)\right)^x\left((x)/(xy+1)\right)^y)


=\left((x^2y^2-1)/(y^2)\cdot(y)/(xy-1)\cdot(x)/(xy+1)\right)^x\left((xy-1)/(y)\cdot(x^2)/(x^2y^2-1)\cdot(xy+1)/(x)\right)^y


=\left(((xy-1)(xy+1)xy)/(y^2(xy-1)(xy+1))\right)^x\left((x^2(xy-1)(xy+1))/(xy(xy-1)(xy+1))\right)^y\\\\=\left((x)/(y)\right)^x\left((x)/(y)\right)^y=\left((x)/(y)\right)^(x+y)

Used:


a^(-n)=\left((1)/(a)\right)^n\\\\(a\cdot b)^n=a^n\cdot b^n\\\\\left((a)/(b)\right)^n=(a^n)/(b^n)\\\\a^2-b^2=(a-b)(a+b)\\\\a^n\cdot a^m=a^(n+m)

User Ray Fischer
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories