Final answer:
Hybridization of nitrogen depends on its bonding context; sp hybridization leads to a linear geometry, whereas sp³ hybridization results in a trigonal pyramidal geometry with one lone pair, as seen in ammonia.
Step-by-step explanation:
The question is asking about the hybridization of nitrogen in various substances. Hybridization describes the mixing of atomic orbitals to form new hybrid orbitals that can accommodate bonding and lone pairs in molecules. For a nitrogen atom with sp hybridization, the molecule usually has a linear geometry, as in the case of hydrogen cyanide (HCN). Here, nitrogen has one sp hybrid orbital with a lone pair and one with a sigma bond, while the two p orbitals form pi bonds, resulting in a triple bond.
In cases where nitrogen is sp³ hybridized, the nitrogen atom can form three sigma bonds with its sp³ hybrid orbitals and retain one lone pair, giving a trigonal pyramidal geometry. An example of this is in ammonia (NH₃), where the nitrogen atom is bonded to three hydrogen atoms and has one lone pair.