Answer:
The given series in sigma notation is
![(1)/(64)+(1)/(16)+(1)/(4)+1+4=\sum\limits_(i=1)^(5)(1)/(4^(4-i))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f0va31s8a61drjyh7lfxght8kwgbuupyqu.png)
Explanation:
Given series is
![(1)/(64)+(1)/(16)+(1)/(4)+1+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fc4bdmvnwcgzb1zthppt9q3ralxxd978u5.png)
To that given sum expressed in sigma notation :
The given series in sigma notation is
![(1)/(64)+(1)/(16)+(1)/(4)+1+4=\sum\limits_(i=1)^(5)(1)/(4^(4-i))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f0va31s8a61drjyh7lfxght8kwgbuupyqu.png)
Now check the sigma notation is correct or not:
![\sum\limits_(i=1)^(5)(1)/(4^(4-i))=(1)/(4^(4-1))+(1)/(4^(4-2))+(1)/(4^(4-3))+(1)/(4^(4-4))+(1)/(4^(4-5))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/csrq7pvsdg7embnjzx6k6jyi81v97z69c4.png)
![=(1)/(4^3)+(1)/(4^2)+(1)/(4^1)+(1)/(4^0)+(1)/(4^(-1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pbh3du4ix9x4ngl2i9jrk7py4kc29w77um.png)
![=(1)/(64)+(1)/(16)+(1)/(4)+(1)/(1)+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fe81zvkl43rvqap8u1n34yf4vumj96462d.png)
![=(1)/(64)+(1)/(16)+(1)/(4)+1+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aigq5hh7v6q9odsr36hasxnsw3bf1naqvj.png)
Therefore
![\sum\limits_(i-1)^(5)(1)/(4^(4-i))=(1)/(64)+(1)/(16)+(1)/(4)+1+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p1sm2wr55o5t5m1ao45v6xlrbru16el7sh.png)
Therefore our answer is correct.
The given series in sigma notation is
![(1)/(64)+(1)/(16)+(1)/(4)+1+4=\sum\limits_(i=1)^(5)(1)/(4^(4-i))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f0va31s8a61drjyh7lfxght8kwgbuupyqu.png)