88.4k views
4 votes
Complete the square for each expression. Then factor the Trinomial
x^2+8x

1 Answer

1 vote

The value of x is
x=0 or
x=-8

Explanation:

The expression is
x^(2) +8x=0

To complete the square, the equation is of the form
ax^(2) +bx+c=0

The constant term c can be determined using,
c=\left(((b)/(a))/(2)\right)^(2)


\begin{aligned}c &=\left((8)/(2)\right)^(2) \\&=\left((8)/(2)\right)^(2) \\c &=4^(2) \\c &=16\end{aligned}

Rewriting the expression
x^(2) +8x=0 and factoring the trinomial, we have,


\begin{array}{r}{x^(2)+8 x+16=16} \\{(x+4)^(2)=16}\end{array}

Taking square root on both sides, we get,


\begin{aligned}&x+4=√(16)\\&x+4=\pm 4\end{aligned}

Either,


\begin{array}{r}{x+4=4} \\{x=0}\end{array} or
\begin{array}{r}{x+4=-4} \\{x=-8}\end{array}

Thus, the value of x is
x=0 or
x=-8

User Awrigley
by
6.4k points