74.9k views
23 votes
Find the first derivative of the following:


y = x * \sqrt[3]{x}
then dy/dx=
a)

\sqrt[3]{x}
b)

(4)/(3) \sqrt[3]{x}
c)

\frac{4}{ \sqrt[3]{x {}^(2) } }
d)

12 \sqrt[3]{x}

*answer with steps, please​

1 Answer

2 votes

Consider the given function :


{:\implies \quad \sf y=x\sqrt[3]{x}}

Before doing this question let's recall some basic formulae of calculus;


  • {\boxed{\bf{a^(m)\cdot{a^(n)}=a^(m+n)}}}


  • {\boxed{\bf{(d)/(dx)(x^n)=n{x}^(n-1)}}}

So, now let's move on to our question ;


{:\implies \quad \sf y=x\sqrt[3]{x}}

Can be further written as ;


{:\implies \quad \sf y=x(x)^(\footnotesize \frac13)}

Using the 1st identity can be written as ;


{:\implies \quad \sf y=x^(\footnotesize \frac43)}

Now, differentiating both sides w.r.t.x ;


{:\implies \quad \sf (d)/(dx)(y)=(4)/(3)(x)^{\footnotesize (4)/(3)-1}}


{:\implies \quad \sf (dy)/(dx)=(4)/(3)(x)^{\footnotesize (4-3)/(3)}}


{:\implies \quad \sf (dy)/(dx)=(4)/(3)(x)^{\footnotesize (1)/(3)}}


{:\implies \quad \bf \therefore \quad \underline{\underline{(dy)/(dx)=(4)/(3)\sqrt[3]{x}}}}

Hence, Option B) is correct

User Dmuun
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories