74.9k views
23 votes
Find the first derivative of the following:


y = x * \sqrt[3]{x}
then dy/dx=
a)

\sqrt[3]{x}
b)

(4)/(3) \sqrt[3]{x}
c)

\frac{4}{ \sqrt[3]{x {}^(2) } }
d)

12 \sqrt[3]{x}

*answer with steps, please​

1 Answer

2 votes

Consider the given function :


{:\implies \quad \sf y=x\sqrt[3]{x}}

Before doing this question let's recall some basic formulae of calculus;


  • {\boxed{\bf{a^(m)\cdot{a^(n)}=a^(m+n)}}}


  • {\boxed{\bf{(d)/(dx)(x^n)=n{x}^(n-1)}}}

So, now let's move on to our question ;


{:\implies \quad \sf y=x\sqrt[3]{x}}

Can be further written as ;


{:\implies \quad \sf y=x(x)^(\footnotesize \frac13)}

Using the 1st identity can be written as ;


{:\implies \quad \sf y=x^(\footnotesize \frac43)}

Now, differentiating both sides w.r.t.x ;


{:\implies \quad \sf (d)/(dx)(y)=(4)/(3)(x)^{\footnotesize (4)/(3)-1}}


{:\implies \quad \sf (dy)/(dx)=(4)/(3)(x)^{\footnotesize (4-3)/(3)}}


{:\implies \quad \sf (dy)/(dx)=(4)/(3)(x)^{\footnotesize (1)/(3)}}


{:\implies \quad \bf \therefore \quad \underline{\underline{(dy)/(dx)=(4)/(3)\sqrt[3]{x}}}}

Hence, Option B) is correct

User Dmuun
by
3.1k points