159k views
0 votes
Log(x-2)+log2=2logy
log(x-3y+3)=0​

User Geomorillo
by
5.0k points

1 Answer

3 votes

Answer:

x = 4 and y = 2 or x = 10 and y = 4

Explanation:


\left\{\begin{array}{ccc}\log(x-2)+\log2=2\log y&(1)\\\log(x-3y+3)=0&(2)\end{array}\right


===========================\\\text{DOMAIN:}\\\\x-2>0\to x>2\\y>0\\x-3y+3>0\to x-3y>-3\\=====================\\\\\text{We know:}\ \log_ab=c\iff a^c=b,\\\\\text{therefore}\ \log_ab=0\iff a^0=b\to b=1\\\\\text{From this we have}\\\\\log(x-3y+3)=0\iff x-3y+3=1\qquad\text{add}\ 3y\ \text{to both sides}\\\\x+3=3y+1\qquad\text{subtract 3 from both isdes}\\\\\boxed{x=3y-2}\qquad(*)\\\\\text{Substitute it to (1)}


\log(3y-2-2)+\log2=2\log(y)\qquad\text{use}\ \log_ab^n=n\log_ab\\\\\log(3y-4)+\log2=\log(y^2)\qquad\text{subtract}\ \log(y^2)\ \text{from both sides}\\\\\log(3y-4)+\log2-\log(y^2)=0\\\\\text{Use}\ \log_ab+\log_ac=\log_a(bc)\ \text{and}\ \log_ab-\log_ac=\log_a(b)/(c)\\\\\log((3y-4)(2))/(y^2)=0\qquad\text{use}\ \log_ab=0\Rightarrow b=1\\\\((3y-4)(2))/(y^2)=1\iff y^2=(3y-4)(2)\\\\\text{Use the distributive property}\ a(b+c)=ab+ac


y^2=(3y)(2)+(-4)(2)\\\\y^2=6y-8\qquad\text{subtract}\ 6y\ \text{from both sides}\\\\y^2-6y=-8\qquad\text{add 8 to both sides}\\\\y^2-6y+8=0\\\\y^2-2y-4y+8=0\\\\y(y-2)-4(y-2)=0\\\\(y-2)(y-4)=0\iff y-2=0\ \vee\ y-4=0\\\\\boxed{y=2\ \vee\ y=4}\in D


\text{Put the values of}\ y\ \text{to }\ (*):\\\\\text{for}\ y=2:\\\\x=3(2)-2\\\\x=6-2\\\\\boxed{x=4}\in D\\\\\text{for}\ y=4:\\\\x=3(4)-2\\\\x=12-2\\\\\boxed{x=10}\in D

User Aaron Kurtzhals
by
4.6k points