Answer:
False
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Integral Notation
Integration Property [Multiplied Constant]:

U-Substitution
Step-by-step explanation:
Step 1: Define
Identify

Step 2: Verify Pt. 1
Identify variables for u-substitution.
- Set u:

- [u] Differentiate [Derivative Properties]:

- [Limits] Switch:

Step 3: Verify Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- Compare:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration