114k views
5 votes
AP CALC AB QUESTION PLEASE HELP AND PROVIDE AN EXPLANATION

AP CALC AB QUESTION PLEASE HELP AND PROVIDE AN EXPLANATION-example-1

1 Answer

0 votes

Answer:

False

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integral Notation

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

Step 1: Define

Identify


\displaystyle \int\limits^3_2 {(1)/(3x - 2)} \, dx \stackrel{?}{=} \int\limits^7_4 {(1)/(u)} \, du

Step 2: Verify Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 3x - 2
  2. [u] Differentiate [Derivative Properties]:
    \displaystyle du = 3 \ dx
  3. [Limits] Switch:
    \displaystyle \left \{ {{x = 3 ,\ u = 3(3) - 2 = 7} \atop {x = 2 ,\ u = 3(2) - 2 = 4}} \right.

Step 3: Verify Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^3_2 {(1)/(3x - 2)} \, dx = (1)/(3) \int\limits^3_2 {(3)/(3x - 2)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^3_2 {(1)/(3x - 2)} \, dx = (1)/(3) \int\limits^7_4 {(1)/(u)} \, du
  3. Compare:
    \displaystyle \int\limits^3_2 {(1)/(3x - 2)} \, dx = (1)/(3) \int\limits^7_4 {(1)/(u)} \, du \\eq \int\limits^7_4 {(1)/(u)} \, du

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Chandra Patni
by
3.2k points