Answer:
a)
![P(x,2x^2-5),\ Q(x+h,2(x+h)^2-5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nad7weiuztr53orb90emyj6ocrddzfr8mx.png)
b)
![4x+2h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c7yxep4fq6tpzx9yglp1ephlcxq9or7938.png)
c)
![4x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mztpirqdwgp1mw0ou3bdvj358jkqdswuzb.png)
Explanation:
Given the curve
![y=2x^2-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bgixtpbfw6f8fh8lvbhxmf1f65du9rj6pt.png)
a) If the x-coordinate of P is
, then the y-coordinate is
so point P has coordinates
![(x,2x^2-5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r5mptcfuvkkj1pvg8w13ii3mbn2rzyhe2f.png)
If the x-coordinate of Q is
, then the y-coordinate is
so point Q has coordinates
![(x+h,2(x+h)^2-5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k6dai8gdureiibq5s63y3ey5npa8jg9mfd.png)
b) The gradient of the secant RQ is
![(y_Q-y_P)/(x_Q-x_P)\\ \\=((2(x+h)^2-5)-(2x^2-5))/((x+h)-x)\\ \\=(2(x+h)^2-5-x^2+5)/(x+h-x)\\ \\=(2(x+h)^2-2x^2)/(h)\\ \\=(2x^2+4xh+2h^2-2x^2)/(h)\\ \\=(4xh+2h^2)/(h)\\ \\=4x+2h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5ihfx7ih1yfbkbstujy7wrk6krj12xlq9h.png)
c) If
then the gradient
![4x+2h\rightarrow 4x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nmwxdw47jnic47b3kodzizuj7c7nrw5js8.png)