29.5k views
5 votes
Evaluate the function h (x) = x^4 + x^2 + 1 at the given values of the independent variable and simplify.

a. h(3)
b. h(- 1)
c. h(-x)
d. h(3a)

User Mikey G
by
4.8k points

1 Answer

2 votes

Answer:

The values are

a)
h(3)=91

b)
h(-1)=3

c)
h(-x)=x^4+x^2+1=h(x)

d)
h(3a)=9a^2(9a^2+1)+1

Explanation:

Given that the function h is defined by


h(x)=x^4+x^2+1

To find

a) h(3)

Put x=3 in the given function
h(x)=x^4+x^2+1 we get


h(3)=3^4+3^2+1


=81+9+1


=91

Therefore
h(3)=91

b) h(-1)

Put x=-1 in the given function
h(x)=x^4+x^2+1 we get


h(-1)=(-1)^4+(-1)^2+1


=1+1+1


=3

Therefore
h(-1)=3

c) h(-x)

Put x=-x in the given function
h(x)=x^4+x^2+1 we get


h(-x)=(-x)^4+(-x)^2+1


=x^4+x^2+1


=h(x)

Therefore
h(-x)=x^4+x^2+1=h(x)

d) h(3a)

Put x=3a in the given function
h(x)=x^4+x^2+1 we get


h(3a)=(3a)^4+(3a)^2+1


=3^4.a^4+3^2.a^2+1


=81a^4+9a^2+1


=9a^2(9a^2+1)+1

Therefore
h(3a)=9a^2(9a^2+1)+1

User Thran
by
4.4k points