29.5k views
5 votes
Evaluate the function h (x) = x^4 + x^2 + 1 at the given values of the independent variable and simplify.

a. h(3)
b. h(- 1)
c. h(-x)
d. h(3a)

User Mikey G
by
8.2k points

1 Answer

2 votes

Answer:

The values are

a)
h(3)=91

b)
h(-1)=3

c)
h(-x)=x^4+x^2+1=h(x)

d)
h(3a)=9a^2(9a^2+1)+1

Explanation:

Given that the function h is defined by


h(x)=x^4+x^2+1

To find

a) h(3)

Put x=3 in the given function
h(x)=x^4+x^2+1 we get


h(3)=3^4+3^2+1


=81+9+1


=91

Therefore
h(3)=91

b) h(-1)

Put x=-1 in the given function
h(x)=x^4+x^2+1 we get


h(-1)=(-1)^4+(-1)^2+1


=1+1+1


=3

Therefore
h(-1)=3

c) h(-x)

Put x=-x in the given function
h(x)=x^4+x^2+1 we get


h(-x)=(-x)^4+(-x)^2+1


=x^4+x^2+1


=h(x)

Therefore
h(-x)=x^4+x^2+1=h(x)

d) h(3a)

Put x=3a in the given function
h(x)=x^4+x^2+1 we get


h(3a)=(3a)^4+(3a)^2+1


=3^4.a^4+3^2.a^2+1


=81a^4+9a^2+1


=9a^2(9a^2+1)+1

Therefore
h(3a)=9a^2(9a^2+1)+1

User Thran
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories