The factorization of given expression is:
![216x^(12)-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)](https://img.qammunity.org/2021/formulas/english/middle-school/ctayju84lfiu18xzafx3vfhlfjiuay9ume.png)
Solution:
Given that we have to factorize the given expression
Given expression is:
![216x^(12)-64](https://img.qammunity.org/2021/formulas/english/middle-school/lf98qzb6opqgasdp1tm9hddwl8oom5amw3.png)
Let us factorize the expression
![\text{ Rewrite } 64 \text{ as } 8 * 8](https://img.qammunity.org/2021/formulas/english/middle-school/inmt2evz2oig95xu9sdwqez0uy30nvn7bj.png)
![\text{Rewrite } 216 \text{ as } 8 * 27](https://img.qammunity.org/2021/formulas/english/middle-school/8f15bomh5pwkgc6bt8891ru165u2ke8hym.png)
Thus the given expression becomes,
![216x^(12) - 64 = (8 * 27)(x^(12)) - (8 * 8)\\\\\text{Factor out common term 8 }](https://img.qammunity.org/2021/formulas/english/middle-school/r9zrd79v9ftwjbhftju0wszz2gqobb9cen.png)
![216x^(12) -64= 8(27x^(12)-8)](https://img.qammunity.org/2021/formulas/english/middle-school/pxdvgt2hdd5d1s3fd6ey5r7vdbi1gl971q.png)
![\mathrm{Rewrite\:}27x^(12)-8\mathrm{\:as\:}\left(3x^4\right)^3-2^3](https://img.qammunity.org/2021/formulas/english/middle-school/q0uz11szbf4lqy0nsuq16k3w9t4f4m6lut.png)
![8(27x^(12)-8) = 8(\left(3x^4\right)^3-2^3)](https://img.qammunity.org/2021/formulas/english/middle-school/4gpp196if745ysqigrp9mfm6l25p9o5pdt.png)
Let us apply the difference of cubes formula
![x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)](https://img.qammunity.org/2021/formulas/english/middle-school/jq81bvq2qxoi1qfohy56elfow5446r00xq.png)
![\left(3x^4\right)^3-2^3=\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)](https://img.qammunity.org/2021/formulas/english/middle-school/uh41qonachjxc12dxoz13mdibopk1k3qp7.png)
Therefore,
![8(27x^(12)-8) = 8\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)\\\\8(27x^(12)-8) = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)](https://img.qammunity.org/2021/formulas/english/middle-school/hm7oa2q0cbdkuilxde20wh05mda55bqy4i.png)
Thus factorization of given expression is:
![216x^(12)-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)](https://img.qammunity.org/2021/formulas/english/middle-school/ctayju84lfiu18xzafx3vfhlfjiuay9ume.png)