99.4k views
3 votes
What is the factorization of 216x^12 -64​

User Jarondl
by
4.5k points

1 Answer

4 votes

The factorization of given expression is:


216x^(12)-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)

Solution:

Given that we have to factorize the given expression

Given expression is:


216x^(12)-64

Let us factorize the expression


\text{ Rewrite } 64 \text{ as } 8 * 8


\text{Rewrite } 216 \text{ as } 8 * 27

Thus the given expression becomes,


216x^(12) - 64 = (8 * 27)(x^(12)) - (8 * 8)\\\\\text{Factor out common term 8 }


216x^(12) -64= 8(27x^(12)-8)


\mathrm{Rewrite\:}27x^(12)-8\mathrm{\:as\:}\left(3x^4\right)^3-2^3


8(27x^(12)-8) = 8(\left(3x^4\right)^3-2^3)

Let us apply the difference of cubes formula


x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)


\left(3x^4\right)^3-2^3=\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)

Therefore,


8(27x^(12)-8) = 8\left(3x^4-2\right)\left(3^2x^8+2\cdot \:3x^4+2^2\right)\\\\8(27x^(12)-8) = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)

Thus factorization of given expression is:


216x^(12)-64 = 8\left(3x^4-2\right)\left(9x^8+6x^4+4\right)

User Skovorodkin
by
5.0k points