Answer:
![y = (3)/(2)x - 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ot2iy2e9h9jk3o9p0cukbj7scjk3bkucry.png)
![y = (1)/(8) x - (7)/(8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gp4ikggg1fwjkcjsngbioxo8i7dgqbbasp.png)
Explanation:
The given system is
3x-2y=6
0.4(20y+15)=x
The slope intercept form is y=mx+c.
For the first equation, 3x-2y=6, we add -3x to both side -2y=-3x+6
![y = (3)/(2)x - 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ot2iy2e9h9jk3o9p0cukbj7scjk3bkucry.png)
For 0.4(20y+15)=x, we expand to get:
![8y + 7 = x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tla2nwz4zmek8vbkioqu13sjq4jvutkdxc.png)
![8y= x - 7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3tngl06gn4q2a9qkok3ykbc3o6gaj2popw.png)
Divide through by 8
![y = (1)/(8)x - (7)/(8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8znbiad3cylkek0q6qg87l0pu0uckw2l79.png)
Therefore the system in slope-intercept form is:
![y = (3)/(2)x - 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ot2iy2e9h9jk3o9p0cukbj7scjk3bkucry.png)
![y = (1)/(8)x - (7)/(8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8znbiad3cylkek0q6qg87l0pu0uckw2l79.png)