Answer:
C. unlikely
Explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
A probability is said to be extremely likely if it is 95% or higher, and extremely unlikely if it is 5% or lower. A probabilty higher than 50% and lower than 95% is said to be likely, and higher than 5% and lower than 50% is said to be unlikely.
In this problem, we have that:
How likely is it that a single survey would return a mean of 30%?
We have to find the pvalue of Z when X = 0.30.
has a pvalue of 0.1587.
So the correct answer is:
C. unlikely