Answer : The freezing point of a solution is
![-15.4^oC](https://img.qammunity.org/2021/formulas/chemistry/college/3opbvwcnwgeigikmjfsr7jefja3gnhqj2j.png)
Explanation : Given,
Molal-freezing-point-depression constant
=
![5.32^oC/m](https://img.qammunity.org/2021/formulas/chemistry/college/qesdwqh9t432wij4yyh1d38s6hnc93mfmm.png)
Mass of urea (solute) = 29.82 g
Mass of solvent = 500 g = 0.500 kg
Molar mass of urea = 60.06 g/mole
Formula used :
![\Delta T_f=i* K_f* m\\\\T^o-T_s=i* K_f*\frac{\text{Mass of urea}}{\text{Molar mass of urea}* \text{Mass of solvent in Kg}}](https://img.qammunity.org/2021/formulas/chemistry/college/zk3evjtfrx9wqadvt25rrm5wknk33v51a4.png)
where,
= change in freezing point
= freezing point of solution = ?
= freezing point of solvent =
![-10.1^oC](https://img.qammunity.org/2021/formulas/chemistry/college/8xnrvhj9hr9126x9if3w38gkh75eyzp8i5.png)
i = Van't Hoff factor = 1 (for urea non-electrolyte)
= freezing point constant =
![5.32^oC/m](https://img.qammunity.org/2021/formulas/chemistry/college/qesdwqh9t432wij4yyh1d38s6hnc93mfmm.png)
m = molality
Now put all the given values in this formula, we get
![-10.1^oC-T_s=1* (5.32^oC/m)* (29.82g)/(60.06g/mol* 0.500kg)](https://img.qammunity.org/2021/formulas/chemistry/college/d53mfp4g3dd6cwg7sq52jnq9sjk6vptehk.png)
![T_s=-15.4^oC](https://img.qammunity.org/2021/formulas/chemistry/college/83artafhjlz2v9d19cv7ftfv11wf9hdv0d.png)
Therefore, the freezing point of a solution is
![-15.4^oC](https://img.qammunity.org/2021/formulas/chemistry/college/3opbvwcnwgeigikmjfsr7jefja3gnhqj2j.png)