173k views
3 votes
Find the exact trigonometric ratios for the angle x whose radian measure is given. (If an answer is undefined, enter UNDEFINED.) 4π 3 sin(x) = csc(x) = cos(x) = sec(x) = tan(x) = cot(x) =

User IgKh
by
4.4k points

1 Answer

4 votes

Answer:


\text{sin}((4\pi)/(3))=-(√(3))/(2)


\text{csc}((4\pi)/(3))=-(2√(3))/(3)


\text{cos}((4\pi)/(3))=-(1)/(2)


\text{sec}((4\pi)/(3))=-2


\text{tan}((4\pi)/(3))=√(3)


\text{cot}((4\pi)/(3))=(√(3))/(3)

Explanation:

We are asked to find the exact trigonometric ratio for given angle
x=(4\pi)/(3).


\text{sin}(x)=\text{sin}((4\pi)/(3))


\text{sin}((4\pi)/(3))=\text{sin}(\pi+(\pi)/(3))

Using summation identity, we will get:


\text{sin}(\pi+(\pi)/(3))=\text{sin}(\pi)\text{cos}((\pi)/(3))+\text{cos}(\pi)\text{sin}((\pi)/(3))


\text{sin}(\pi+(\pi)/(3))=(0)(1)/(2)+(-1)((√(3))/(2))


\text{sin}(\pi+(\pi)/(3))=0+-(√(3))/(2)


\text{sin}((4\pi)/(3))=-(√(3))/(2)

Let us find
\text{csc}(x)=\text{csc}((4\pi)/(3))

We will use identity
\text{csc}(x)=\frac{1}{\text{sin}(x)}


\text{csc}((4\pi)/(3))=\frac{1}{\text{sin}((4\pi)/(3))}=(1)/(-(√(3))/(2))=-(2)/(√(3))=-(2√(3))/(3)

Now, we will solve for cos(x).


\text{cos}((4\pi)/(3))=\text{cos}(\pi+(\pi)/(3))


\text{cos}(\pi+(\pi)/(3))=\text{cos}(\pi)\text{cos}((\pi)/(3))-\text{sin}(\pi)\text{sin}((\pi)/(3))


\text{cos}(\pi+(\pi)/(3))=(-1)(1)/(2)-(0)((√(3))/(2))


\text{cos}(\pi+(\pi)/(3))=-(1)/(2)-0


\text{cos}((4\pi)/(3))=-(1)/(2)

Let us find sec(x).

We will use identity
\text{sec}(x)=\frac{1}{\text{cos}(x)}


\text{sec}((4\pi)/(3))=\frac{1}{\text{cos}((4\pi)/(3))}=(1)/(-(1)/(2))=-2

Let us find tan(x).

We will use identity
\text{tan}(x)=\frac{\text{sin}(x)}{\text{cos}(x)}.


\text{tan}((4\pi)/(3))=\frac{\text{sin}((4\pi)/(3))}{\text{cos}((4\pi)/(3))}


\text{tan}((4\pi)/(3))=(-(√(3))/(2))/(-(1)/(2))}=(√(3)*2)/(2*1)=√(3)

Let us find cot(x).

We will use identity
\text{cot}(x)=\frac{1}{\text{tan}(x)}.


\text{cot}((4\pi)/(3))=\frac{1}{\text{tan}((4\pi)/(3))}


\text{cot}((4\pi)/(3))=(1)/(√(3))=(√(3))/(3)

User Agaz Wani
by
3.9k points