Answer:
![\text{sin}((4\pi)/(3))=-(√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/fdu446p253xentew74nkta528xqsehoaca.png)
![\text{csc}((4\pi)/(3))=-(2√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/dwkvecx5ed2wjfh6slpg9rjmboszauucz8.png)
![\text{sec}((4\pi)/(3))=-2](https://img.qammunity.org/2021/formulas/mathematics/college/tof3idcjjkjl1mazkmse82pra7ovburqx0.png)
![\text{tan}((4\pi)/(3))=√(3)](https://img.qammunity.org/2021/formulas/mathematics/college/ok4m9nst3lu918u7euxb31cve8vyx9bqq8.png)
![\text{cot}((4\pi)/(3))=(√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/xpv8ea1zk1jsgmjkto0fg0i93znacnztlx.png)
Explanation:
We are asked to find the exact trigonometric ratio for given angle
.
![\text{sin}((4\pi)/(3))=\text{sin}(\pi+(\pi)/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/ev0tsdl211zpo401hyxwzgjadjam26ucsl.png)
Using summation identity, we will get:
![\text{sin}(\pi+(\pi)/(3))=\text{sin}(\pi)\text{cos}((\pi)/(3))+\text{cos}(\pi)\text{sin}((\pi)/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/dosgagai592dks6mpp7ptq3902mpjmnlfb.png)
![\text{sin}(\pi+(\pi)/(3))=(0)(1)/(2)+(-1)((√(3))/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/pqlmcpbn5p08wv9a1aflj1ockvnrhw6f8k.png)
![\text{sin}(\pi+(\pi)/(3))=0+-(√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ipa9dxaqwyhd0ddhbfyx5b72enuct9wqf7.png)
![\text{sin}((4\pi)/(3))=-(√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/fdu446p253xentew74nkta528xqsehoaca.png)
Let us find
![\text{csc}(x)=\text{csc}((4\pi)/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/hj852axdgsnazzwejqgie367pskhrwtx09.png)
We will use identity
![\text{csc}(x)=\frac{1}{\text{sin}(x)}](https://img.qammunity.org/2021/formulas/mathematics/college/lihc2rqdtszh33q6ocugzn1x7x7ruuckep.png)
![\text{csc}((4\pi)/(3))=\frac{1}{\text{sin}((4\pi)/(3))}=(1)/(-(√(3))/(2))=-(2)/(√(3))=-(2√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/sqe6p3xpojj3h7n5d83ejh8di97lnyw2b0.png)
Now, we will solve for cos(x).
![\text{cos}((4\pi)/(3))=\text{cos}(\pi+(\pi)/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/jqrgdmbdsgexm1ybop5mowdgv45tsw8k2e.png)
![\text{cos}(\pi+(\pi)/(3))=\text{cos}(\pi)\text{cos}((\pi)/(3))-\text{sin}(\pi)\text{sin}((\pi)/(3))](https://img.qammunity.org/2021/formulas/mathematics/college/qpdjgivj7p93flak53i1qvjhnq6ke5nr1j.png)
![\text{cos}(\pi+(\pi)/(3))=(-1)(1)/(2)-(0)((√(3))/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/2zvthphticboeof3jnr0h39ahcl096hcev.png)
![\text{cos}(\pi+(\pi)/(3))=-(1)/(2)-0](https://img.qammunity.org/2021/formulas/mathematics/college/nh1p3owux2rgfih0wrmcs9nf83uijycl42.png)
![\text{cos}((4\pi)/(3))=-(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/rgxo82sno8tiu7dyzg4serwa6qcgfuqhl7.png)
Let us find sec(x).
We will use identity
![\text{sec}(x)=\frac{1}{\text{cos}(x)}](https://img.qammunity.org/2021/formulas/mathematics/college/vnk5hjp5p4bbm4f3sbu6ceytm03dpm95n1.png)
![\text{sec}((4\pi)/(3))=\frac{1}{\text{cos}((4\pi)/(3))}=(1)/(-(1)/(2))=-2](https://img.qammunity.org/2021/formulas/mathematics/college/mpvrfdcu4tfs6k0alzmb702m4hubrzmify.png)
Let us find tan(x).
We will use identity
.
![\text{tan}((4\pi)/(3))=\frac{\text{sin}((4\pi)/(3))}{\text{cos}((4\pi)/(3))}](https://img.qammunity.org/2021/formulas/mathematics/college/noz7rygfpk05hp6wyv1vt6roz6gbyhf76a.png)
![\text{tan}((4\pi)/(3))=(-(√(3))/(2))/(-(1)/(2))}=(√(3)*2)/(2*1)=√(3)](https://img.qammunity.org/2021/formulas/mathematics/college/eutfi7faw0pipy4r1y6h41pexfm6f2q4s8.png)
Let us find cot(x).
We will use identity
.
![\text{cot}((4\pi)/(3))=\frac{1}{\text{tan}((4\pi)/(3))}](https://img.qammunity.org/2021/formulas/mathematics/college/8kuxs5mhh5ye8qbxk5sp6bhb73q4xk1oa1.png)
![\text{cot}((4\pi)/(3))=(1)/(√(3))=(√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/ac9lp0nm54x36jti1yldzw5w9g00tdjpgt.png)