124k views
6 votes
The sum of four consecutive even integers is 212. Find the integers.

2 Answers

7 votes

Answer:

50 , 52 , 54 , 56

Explanation:

Let (x-3), (x-1),(x+1) & (x+3) are four consecutive numbers whose sum is 212 then

x-3+x-1+x+1+x+3=212

4x=212

x=(212/4)

x=53

So numbers are 50,52,54 & 56

User Motti Shaked
by
4.2k points
8 votes

Answer:

  • The required integers are 50, 52, 54 and 56


~

Explanation:

Let the four consecutive even integers be:

  • First integer = x
  • Second integer = x + 2
  • Third integer = x + 4
  • Fourth integer = x + 6


~


{ \underline{ \pmb{According \: to \: the \: question:}}}


~

  • Sums of four integers = 212


~


\: \: \: \: \dashrightarrow \: \: \: \sf x + x + 2 + x + 4 + x + 6 = 212 \\


\: \: \: \: \dashrightarrow \: \: \: \sf 4x + 12 = 212 \\


\: \: \: \: \dashrightarrow \: \: \: \sf 4x = 212 - 12 \\


\: \: \: \: \dashrightarrow \: \: \: \sf 4x = 200 \\


\: \: \: \: \dashrightarrow \: \: \: \sf x = (200)/(4) \\


\: \: \: \: { \pmb{ \sf{ \pink{\dashrightarrow \: \: \: \sf x = 50}}} } \\

Hence,

  • First integer = x = 50
  • Second integer = x + 2 = 52
  • Third integer = x + 4 = 54
  • Fourth integer = x + 6 = 56


~


{ \underline {\therefore{ \pmb{ \frak{ The \: required \: integers \: are \: 50, 52,54 \: and \: 56.}}}}} \\

User Peter Delaney
by
4.5k points