Answer:
of square should be cut out of each corner to create a box with the largest volume.
Explanation:
Given: Dimension of cardboard= 16 x 30“.
As per the dimension given, we know Lenght is 30 inches and width is 16 inches. Also the cardboard has 4 corners which should be cut out.
Lets assume the cut out size of each corner be "x".
∴ Size of cardboard after 4 corner will be cut out is:
Length (l)=
![30-2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uo8ahy0vsrc3fs88odov7lg97rurv2yqtb.png)
Width (w)=
![16-2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tdxuvatndlvb15r9u6ahqxdbr12bjid5vp.png)
Height (h)=
![x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p9sq9b3rc5nwoqzhzc8wcaj51b36281l9g.png)
Now, finding the volume of box after 4 corner been cut out.
Formula; Volume (v)=
![l* w* h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jkc0zweqfp4w41d9m6hbiwexbxvklnylrq.png)
Volume(v)=
![(30-2x)* (16-2x)* x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/znkdo6dmfq9n9egn4z9p26f2wdq07knfez.png)
Using distributive property of multiplication
⇒ Volume(v)=
![4x^(3) -92x^(2) +480x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xeaqvnemx8ot5qvq338980pl82icwsor6q.png)
Next using differentiative method to find box largest volume, we will have
![(dv)/(dx)= 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/acg7dzxachtf8dgzzoijlrwmidt9zlg3el.png)
![(d (4x^(3) -92x^(2) +480x))/(dx) = (dv)/(dx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qa6wu34ogwjr8abtalezp4vbc0g7p161ks.png)
Differentiating the value
⇒
![(dv)/(dx) = 12x^(2) -184x+480](https://img.qammunity.org/2021/formulas/mathematics/middle-school/419142ik9vhwurntixczn91n00y5tws75i.png)
taking out 12 as common in the equation and subtituting the value.
⇒
![0= 12(x^(2) -(46x)/(3) +40)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j8ri63rrwlzhtasuf06h4dnnszhdjmj734.png)
solving quadratic equation inside the parenthesis.
⇒
=0
Dividing 12 on both side
⇒
= 0
We can again take common as (x-12).
⇒
=0
∴
![(x-(10)/(3) ) (x-12)= 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9sqwjk5auuot1vyr7qqxnx8nuh92yh1otf.png)
We have two value for x, which is
![12 and (10)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y9eiezoqktqsgyjmufrfjaejhm15fg92fl.png)
12 is invalid as, w=
![(16-2x)= 16-2* 12](https://img.qammunity.org/2021/formulas/mathematics/middle-school/i3xaefj9k314ugcrq1ezrkr9lj7hs3vq5b.png)
∴ 24 inches can not be cut out of 16 inches width.
Hence, the cut out size from cardboard is
![(10)/(3)\ inches](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6hu4rs04ukegntkqtki8ld1zre0ztbjx7f.png)
Now, subtituting the value of x to find volume of the box.
Volume(v)=
![(30-2x)* (16-2x)* x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/znkdo6dmfq9n9egn4z9p26f2wdq07knfez.png)
⇒ Volume(v)=
![(30-2* (10)/(3) )* (16-2* (10)/(3))* (10)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xh8yte9k23urtlt2ebkwt5oxc75px3kbjm.png)
⇒ Volume(v)=
![(30-(20)/(3) ) (16-(20)/(3)) ((10)/(3) )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2llwztt03tzmwssxhvglzlttpu9dcjntzk.png)
∴ Volume(v)= 725.93 inches³