206k views
1 vote
Find the area between the graph of the given function and the x-axis over the given interval, if possible.

f(x)=1/(x-1)^2, for [-[infinity], 0]

User Darmat
by
7.7k points

1 Answer

7 votes

Answer:


\displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 1

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to c) x = c

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Improper Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define


\displaystyle f(x) = (1)/((x - 1)^2) \\\left[ -\infty ,\ 0 \right]

Step 2: Integrate Pt. 1

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx
  2. [Integral] Rewrite [Improper Integral]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \int\limits^(0)_(a) {(1)/((x - 1)^2)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \dipslaystyle u = x - 1
  2. [u] Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \dipslaystyle du = dx
  3. [Limits] Switch:
    \displaystyle \left \{ {{x = 0 ,\ u = 0 - 1 = -1} \atop {x = a ,\ u = a - 1}} \right.

Step 4: Integrate Pt. 3

  1. [Integral] U-Substitution:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \int\limits^(-1)_(a - 1) {(1)/(u^2)} \, du
  2. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) (-1)/(x) \bigg| \limits^(-1)_(a - 1)
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \bigg( (1)/(a - 1) + 1 \bigg)
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 0 + 1
  5. Simplify:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Advanced Integration Techniques

User Anna Dickinson
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories