Answer:

General Formulas and Concepts:
Calculus
Limits
- Limit Rule [Variable Direct Substitution]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Improper Integrals
Integration Rule [Reverse Power Rule]:

Integration Rule [Fundamental Theorem of Calculus 1]:

U-Substitution
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
![\displaystyle f(x) = (1)/((x - 1)^2) \\\left[ -\infty ,\ 0 \right]](https://img.qammunity.org/2021/formulas/mathematics/college/1cvic59xnqt55d3b1t4uxr9hay1dmy6nau.png)
Step 2: Integrate Pt. 1
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Improper Integral]:

Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u:

- [u] Basic Power Rule [Derivative Property - Addition/Subtraction]:

- [Limits] Switch:

Step 4: Integrate Pt. 3
- [Integral] U-Substitution:

- [Integral] Integration Rule [Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Advanced Integration Techniques