206k views
1 vote
Find the area between the graph of the given function and the x-axis over the given interval, if possible.

f(x)=1/(x-1)^2, for [-[infinity], 0]

User Darmat
by
6.0k points

1 Answer

7 votes

Answer:


\displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 1

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to c) x = c

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Improper Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define


\displaystyle f(x) = (1)/((x - 1)^2) \\\left[ -\infty ,\ 0 \right]

Step 2: Integrate Pt. 1

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx
  2. [Integral] Rewrite [Improper Integral]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \int\limits^(0)_(a) {(1)/((x - 1)^2)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \dipslaystyle u = x - 1
  2. [u] Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \dipslaystyle du = dx
  3. [Limits] Switch:
    \displaystyle \left \{ {{x = 0 ,\ u = 0 - 1 = -1} \atop {x = a ,\ u = a - 1}} \right.

Step 4: Integrate Pt. 3

  1. [Integral] U-Substitution:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \int\limits^(-1)_(a - 1) {(1)/(u^2)} \, du
  2. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) (-1)/(x) \bigg| \limits^(-1)_(a - 1)
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = \lim_(a \to -\infty) \bigg( (1)/(a - 1) + 1 \bigg)
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 0 + 1
  5. Simplify:
    \displaystyle \int\limits^(0)_(- \infty) {(1)/((x - 1)^2)} \, dx = 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Advanced Integration Techniques

User Anna Dickinson
by
5.9k points