207k views
2 votes
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.

f(x) = ln {1 + e^x/ 1 - e^x}

User Lostfields
by
4.8k points

1 Answer

2 votes

Answer:

The derivative of the function :
f(x) = \ln (1 + e^x)/(1 - e^x)


f(x)'=(2e^x)/(1-e^(2x))

Explanation:


f(x) = \ln (1 + e^x)/(1 - e^x)

Identity =
(d(\ln x))/(dx)=(1)/(x)

Quotient rule =
(d((u)/(v)))/(dx)=(v(du)/(dx)-u(dv)/(dx))/(v^2)


f(x)'=(1)/((1 + e^x)/(1 - e^x))* ((1 - e^x)e^x-(1 + e^x)(-e^x))/((1 - e^x)^2)* 1


=(1)/((1 + e^x)/(1 - e^x))* (e^x(1-e^x+1+e^x))/((1-e^x)^2)


=(1)/((1 + e^x)/(1 - e^x))* (e^x(2))/((1 - e^x)^2)


=(1)/((1 + e^x)(1 - e^x))* 2e^x

Identity =
(a+b)(a-b)=a^2-b^2


=(2e^x)/(1-e^(2x))

User Jeffreyweir
by
4.8k points