Answer:
First Option is correct.
(x+2)(x+3)(x-4)
Explanation:
Given:
The given factor is.
![f(x)=x^(3)+x^(2)-14x-24](https://img.qammunity.org/2021/formulas/mathematics/high-school/ggjj7oka3g7wlbvhtm6xxfbjvfjj0luz81.png)
We need to find the factors of given factor.
Solution:
![f(x)=x^(3)+x^(2)-14x-24](https://img.qammunity.org/2021/formulas/mathematics/high-school/ggjj7oka3g7wlbvhtm6xxfbjvfjj0luz81.png)
Substitute (-4x-10x) in the place of -14x
![f(x)=x^(3)+x^(2)-4x-10x-24](https://img.qammunity.org/2021/formulas/mathematics/high-school/8fizojhinoezr8rzm8dwms3t1z2za4975u.png)
Rearrange the equation:
![f(x)=(x^(3)-4x)+(x^(2)-10x-24)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ztdmfvpej17md2ip4c72y6bu1985idqbdg.png)
Now we factorised the above equation.
The factors of
![x^(2) -10x-24=(x+2)(x-12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7yh0c3m7duykilma5d9oqqh7bar6l5lodh.png)
Now we substitute (x+2)(x-12) in the place of
![x^(2) -10x-24](https://img.qammunity.org/2021/formulas/mathematics/high-school/pi9snapawmc8vxr2o3ug3sq7y334xkrb4l.png)
And in the place of
![x^(3)-4x=x(x^(2)-4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmdzl27vj9xt1i21nu4urxhceeuitsni7n.png)
![f(x)=x(x^(2)-4)+(x+2)(x-12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/apmy0hlw8qgi4chnqxrieosr6cpggdjspo.png)
Simplify
![x^(2) -4=x^(2) -(2)^(2) = (x+2)(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ij6buvcu0wow7jxibj6h0aw371jal1m36z.png)
![f(x)=x[(x+2)(x-2)]+(x+2)(x-12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bpj0apasknt8bt4crlrkd5oeyk18vqkasl.png)
Common factor for above function (x+2)
![f(x)=(x+2)[x(x-2)+(x-12)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/tm832fln10cyxxrk5n608tuhq71hv14kry.png)
Simplify.
![f(x)=(x+2)[x^(2)-2x+x-12]](https://img.qammunity.org/2021/formulas/mathematics/high-school/k5lbn1na0vt37f423iikag7rfwej0n8r4b.png)
![f(x)=(x+2)(x^(2)-x-12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q8jw4sz0u6jv0n8aw8fz4o8cjwwm1xriwx.png)
The factor of
![x^(2)-x-12=x^(2)-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7l38aq0cz36wzachclon84vt2ouvur3nhg.png)
So the factors of the function.
![f(x)=(x+2)(x-4)(x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n1opih2u6m1lhc0yfa496qbocetlzmbvdk.png)
Therefore, the factors of the given function are (x+2)(x-4)(x+3)