129k views
4 votes
Find the value of the integral that converges.
∫^[infinity]_4 ln(5x) dx.

User Chachan
by
8.4k points

1 Answer

7 votes

Answer:

Diverges

Explanation:

We have been given a definite integral
\int _4^(\infty )\:4ln\left|5x\right|dx. We are asked to determine whether the given integral converges or diverges.

We will use integral by parts formula to solve our given definite integral.


\int udv=uv-\int vdu

Let
u=ln(5x) and
v'=1.

Now we need to find du and v using above values.


(du)/(dx)=(d)/(dx)(ln(5x))

Apply chain rule:


(du)/(dx)=(1)/(ln(5x))*5=(1)/(x)


v'=1


v=x

Substitute back these values in parts by integration formula.


\int _4^(\infty )\:4ln\left|5x\right|dx=4\int _4^(\infty )\:ln\left|5x\right|dx


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:x*(1)/(x)dx)


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:1dx)


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-x)

Let us compute the boundaries.


4(\infty*ln(5(\infty))-\infty)


4(4ln(5(4))-4)=31.93171


4(\infty*ln(5(\infty))-\infty)-31.93171

Since
4(\infty*ln(5(\infty))-\infty)-31.93171 is not a finite value, therefore, the integral diverges.

User Silvernightstar
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories